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Abstract. In this paper a time-dependent three-dimensional electromagnetic scattering problem is considered.
Let R3 be the three-dimensional real Euclidean space filled with a medium of electric permittivity ε, magnetic
permeability µ and zero electric conductivity. The quantities ε, µ are positive constants and there are no free
charges in the space and the free current is taken to be zero. Let � ⊂ R3 be a bounded simply connected obstacle
with a locally Lipschitz boundary ∂�, that is assumed to have a nonnegative constant boundary electromagnetic
impedance. The limit cases of perfectly conducting and perfectly insulating obstacles are studied. An incoming
electromagnetic wave packet that hits � is considered, and a method that solves the Maxwell equations to compute
the corresponding electromagnetic field scattered by � as a superposition of time harmonic electromagnetic waves
is proposed. These time-harmonic electromagnetic waves are the solutions of exterior boundary-value problems for
the vector Helmholtz equation with the divergence-free condition and they are computed with an ‘operator expan-
sion’ method that generalizes the method presented by L. Fatone et al. [J. Math. Phys. 40 (1999) 4859–4887]. The
method proposed here is computationally very efficient. In fact, it is highly parallelizable with respect to time and
space variables. Several numerical experiments obtained with a parallel implementation of the method are shown.
The numerical results obtained are discussed from a numerical and a physical point of view. The quantitative
character of the numerical experiments shown is established. The website: http://www.econ.unian.it/recchioni/w4/
contains some animations relative to the numerical experiments.
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1. Introduction

In this paper we consider the following problem:
Problem 1: Given an obstacle � ⊂ R3 open, bounded, simply connected, with Lipschitz
continuous boundary and its electromagnetic boundary impedance χ , immersed in a ho-
mogeneous isotropic medium and given an incoming electromagnetic field propagating in
the medium, compute the electromagnetic field generated by the obstacle when hit by the
incoming field. In Figure 1 we sketch the situation described above.

The mathematical model used to study Problem 1 is given by the time-dependent Maxwell
equations. In particular, we assume that the electric permittivity ε > 0, the magnetic permeab-
ility µ > 0 of the medium and the electromagnetic boundary impedance χ ≥ 0 are constant.
Moreover, we assume that the free current is zero, that no free charges are present and that
the electromagnetic incoming field can be represented as a superposition of time-harmonic
electromagnetic fields. This last assumption allows us to solve Problem 1 in the frequency
domain and then to come back to the time domain.
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Figure 1. Sketch of the scattering problem considered.

As suggested in [1] and [2], an ideal numerical method to solve time-dependent Maxwell
equations should fulfill the following conditions:

(r1) the electric field must satisfy Gauss’s law and the magnetic field must be divergence-
free;

(r2) no linear systems have to be solved at each time step;
(r3) the method should guarantee high-order accuracy;
(r4) the method should be easily parallelizable;
(r5) the method should easily handle domains having complex boundary.

The most commonly used solvers for time-dependent Maxwell equations can be classified
as differential-equation-based techniques (finite-difference methods [3], finite-element meth-
ods [4]), or time-domain integral-equation-based techniques (finite-volume methods [5], [6],
boundary-integral methods [7], [8]).

The finite-difference time-domain methods (see [3] for details) are the most commonly
used methods, since they are easy to implement and, sometimes, according to the discretiza-
tion scheme used, easy to parallelize (conditions (r2) and (r4)). In fact, an explicit second-
order scheme for homogeneous media reproducing the relation ‘div curl = 0’ can be found
in Yee [9] and several extensions of this work addressed to verify other vector identities can
be found in [10]. Moreover, to satisfy condition (r1) several approaches have been used,
such as the approach proposed by Munz, Schneider and Sonnerdrüncker [11]. The finite-
difference time-domain methods present some difficulties to fulfill condition (r2) and (r5)

(see for example [12] and [13]). However, recently several methods have been developed in
order to satisfy the five criteria above. For example Lun and Shen [14] proposed the use of a
domain-decomposition technique together with an implicit finite-difference scheme in order
to develop an efficient, easily parallelizable numerical method.
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A different technique is the finite-element method. This method is well suited for complex-
domain geometry, i.e., it naturally fulfills condition (r5). Roughly speaking it is based on a
volumetric discretization of the domain under scrutiny and requires local boundary conditions
for grid truncation, so that, in general it is not well suited to fulfill condition (r1). Moreover,
due to the necessity of using ad hoc techniques to verify condition (r1) (see [15], [16]) this
method often fails to fulfill condition (r2).

Finally, further solvers for time-dependent Maxwell equations are the time-domain integral-
equation-based methods. These methods require only a discretization of the scatterer and they
implicitly impose the radiation condition and do not present grid-dispersion errors, that is, they
easily fulfill condition (r1) and (r5). The main disadvantage is that they are often considered
unstable and computationally expensive with respect to the differential-equation methods. Re-
cently these two lacks have been filled. In fact, stable time-domain integral-equation methods
have been reported, for example in [17], and highly performing computational methods of the
same type have been reported in [8], [7], [18].

In this paper, we propose a method to solve Problem 1. This method could be partially
classified as an integral-equation approach. Indeed, it is a new technique that in favourable
circumstances specified later can satisfy all five conditions (see Section 7). The method is
based on two ideas:

(i1) to represent the electromagnetic scattered field as a superposition of time-harmonic
electromagnetic fields,

(i2) to compute each time-harmonic electromagnetic field via a suitable generalization of
the so-called ‘operator-expansion method’ proposed in [19].

Idea (i1) is not new; for example, in acoustics it has been used by Heyman in [20], but the
use of this idea in the electromagnetic case together with the use of the ‘operator expansion’
method to compute the time harmonic scattered fields is new and generates an interesting
computational method well suited for parallel computation (i.e., condition (r4) is naturally
fulfilled). A similar procedure has been used in [21] in the context of acoustic scattering.
Roughly speaking, we solve the problem in the frequency domain, and then, via a quadrature
formula, we return to the time domain. Under the assumption made above, the solution of
the problem in the frequency domain leads to the solution of a set of exterior boundary-
value problems for the vector Helmholtz equation with the divergence-free condition, one for
each frequency, defined in the exterior of the obstacle �, (see (19–22)). These problems are
independent from one another and can be solved in parallel. We develop a generalization of the
‘operator expansion’ method proposed in [19] to solve the exterior boundary-value problems
in the frequency domain considered above. We choose the ‘operator-expansion method’, since
it is a highly parallelizable method developed to solve exterior boundary-value problems for
the Helmholtz equation. In fact, the ‘operator-expansion’ method was originally introduced
by Milder in [22] to study the time-harmonic acoustic scattering from unbounded surfaces
and later developed in [23–31] to deal with several acoustic and electromagnetic scattering
problems.

More in detail, the ‘operator expansion’ method assumes that the solution of the boundary-
value problem for the Helmholtz equation defined in the exterior of � can be extended to
R3 \�i remaining a solution of the Helmholtz equation, where �i is a suitable domain whose
closure is contained in �. This extension is represented as a single-layer vector potential with a
vector density defined on the boundary of �i , i.e., ∂�i . Thanks to this representation formula,
the solution of the exterior boundary-value problem outside � (see (19–22)) is reduced to the
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solution of a linear integral equation for the density defined on ∂�i (see (38)). This is a linear
integral equation of the first kind with a continuous kernel.

This kind of linear integral equations is ill-posed, so that in the specific case considered
here we propose to solve it perturbatively. The use of this perturbation series is an attempt to
‘cure’ the ill-posedness of the integral equation. As an alternative to this perturbation series,
the ill-posedness of the integral equation can be approached using standard regularization
techniques such as the Tichonov regularization technique. However, in our experience the use
of the perturbation series eventually, together with the use of regularization techniques on the
integral equations coming up at each order in perturbation theory, gives substantially better
results than the use of regularization techniques on the original integral equation.

In particular, we use a series expansion of the unknown vector density, of the integral
operator and of the data. The possibility of using these series expansions is based on the
availability of a coordinate system (η1, η2, η3) in R3 such that the boundary of � can be rep-
resented as a Lipschitz continuous function of two coordinate variables, that is, for example,
η3 = g(η1, η2) where (η1, η2) belongs to a suitable domain of definition and g is a given
function. The expansions are built along the η3 coordinate axis and have as base point a second
surface ∂�r , boundary of �r , where �r is a bounded domain that contains the closure of �i .
Note that in this paper we choose as (η1, η2, η3) coordinate system the spherical coordinates
in R3 with pole in the origin; more general choices are considered in [28]. Via these series
expansions, the solution of the integral equation corresponding to imposing the boundary
condition satisfied by the scattered field on ∂� using an unknown density defined on ∂�i is
transformed in a sequence of integral equations, one for each order in perturbation theory.
These integral equations correspond to imposing the appropriate condition derived from per-
turbation theory on ∂�r using unknown densities defined on ∂�i . Choosing the ‘distance’
between ∂� and ∂�r sufficiently ‘small’, we can satisfy accurately condition (r3) with a few
terms of the series expansion and we can deal with rather general obstacles. In this paper, for
simplicity, we choose the base point ∂�r and ∂�i to be the surface of two spheres and we
choose the vector spherical harmonics as basis to represent the datum, the unknown and the
integral operators. These choices allow us to solve a diagonal linear system at each order in
perturbation theory and to develop a numerical method that naturally fulfills conditions (r1),
(r2) and (r4) also when non-trivial obstacles are considered (see the corrugated surface, i.e.,
Obstacle 5, proposed in Section 6). However, these choices affect the accuracy of the method
(i.e., condition (r3)). In fact, the perturbation solution is based on the assumption that the
boundary of the obstacle is a perturbation of the ‘base point’ of the series expansion, ∂�r , so
that the perturbation solution is accurate when the ‘distance’ of the boundary of the obstacle
from the boundary of the sphere �r is ‘small’ (see Tables 1–5). However, we note that rather
difficult obstacles for many others time-domain Maxwell solvers can be treated satisfactorily
with the method proposed here when we choose (η1, η2, η3) to be the spherical coordinate
system and when �i , �r are chosen to be spheres, that is, �i = Ba and �r = B1, where for
R > 0 BR = { x ∈ R3 |‖x‖ < R} is the sphere of radius R and center the origin (see for
example Obstacle 5 (Table 4)). Later we use B and ∂B instead of B1 and ∂B1, respectively.
Finally, we note that this simple choice has the advantage of avoiding the use of regularization
methods in the solution of the integral equations on the sphere. In fact, when the basis of the
vector spherical harmonic functions is used, the solution of these integral equations is reduced
to the solution of diagonal linear systems that are independent of the sphere Ba and depend
only on ∂� and B1. This is an interesting feature of the implementation of the ‘operator
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Table 1. χ = 0, maxx̂∈∂B |ξ(x̂) − 1| = 0

ω
c ε16

1,Fω,γ
ε16

2,Fω,γ
ε16

3,Fω,γ

1 2·19 × 10−7 3·59 × 10−7 5·00 × 10−7

2 5·51 × 10−7 1·27 × 10−7 4·61 × 10−7

4 5·79 × 10−7 7·56 × 10−7 6·69 × 10−7

8 3·80 × 10−7 5·20 × 10−7 5·43 × 10−7

expansion’ method proposed in this paper, since in practice the explicit choice of the sphere
Ba is not really necessary.

We have noted that the ‘operator expansion’ method should be classified as an integral-
equation approach. We conclude this outline of the ‘operator expansion’ method discussing
some features of the other integral-equation methods that make them different from the ap-
proach proposed here. In particular, we note that the integral equations coming from the
boundary-integral methods are usually of the second kind, that is, they are well-posed integral
equations but have singular kernels, and, when the boundary of the obstacle is only Lipschitz
continuous, involve singular integral operators (see [32], [33]). The numerical treatment of
these singular integral operators is a challenging problem. Moreover, depending on the shape
of the boundary, the discretization process on this boundary may not be ‘easy’ and the res-
ulting algorithms may not be well suited for parallel computation. That is, conditions (r2),
(r4) and (r5) cannot be satisfied simultaneously. In fact, the linear systems coming from the
discretization of the integral equation obtained from the boundary-integral method is usually
a dense linear system (i.e., it is not sparse or diagonal).

The paper is organized as follows. In Section 2 we describe the mathematical model. In
Section 3 we describe the basic ideas of the method proposed and the underlying assump-
tions. In Section 4 we give the expansion of the time-harmonic electromagnetic fields, in
Section 5 we describe the computational method and in Section 6 some numerical results
obtained with a parallel implementation of the method presented in Section 3, 4 and 5 are
presented. In particular, we consider obstacles whose boundary is only a locally Lipschitz
surface (cutted octahedron (Figure 2 (3)), holed sphere (Figure 2 (4))) so that some interesting
physical phenomena due to the faces, edges, vertices and cavities present in the obstacles can
be shown. We show that the computational cost of the algorithm proposed in this paper is
O(S2L2

maxN1 N2 N3 M), when S → +∞, Lmax → +∞, N1, N2, N3 → +∞, M → ∞,
where N1 · N2 · N3 is the number of quadrature points used in the integral-representation
formulae for the scattered electromagnetic field E s , Bs , S is the order at which the perturbation
expansion is truncated, 2(Lmax + 2)Lmax is the number of vector spherical harmonics used to
represent the unknown densities, that is the series in vector spherical harmonics are truncated
for l = Lmax, and M is the number of quadrature points used to approximate the double integ-
rals on ∂B (see formula (68)). The unknown densities are assumed to be tangential to ∂B. For
this reason we use only 2(Lmax +2)Lmax vector spherical harmonics to represent the densities.
We note that we obtain satisfactory results using always Lmax ≤ 20 and S ≤ 10. Moreover in
many applications of practical interest we can choose N2 = N3 = 1 (see Section 6) reducing
the burden of the previous formula and at each order in perturbation theory we can compute in
parallel the integrals reducing the computational cost to O(S2L2

maxN1 N2 N3 M/Np), where
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Figure 2. Obstacles: Sphere (1), Corrugated Sphere (h = 0.7) (2), Cutted Octahedron (3), Holed Sphere (4).

Np is the number of processors used. Note that this computational cost is relative to the
particular implementation of the operator-expansion method proposed in this paper, that is
to the choice of the spherical coordinate system, the choice �i = Ba and �r = B1, 0 < a < 1
and the use of the vector spherical harmonics as basis to represent the datum, the unknown
and the integral operators.

It is not easy to make comparisons between the computational cost of the proposed al-
gorithm and the computational cost of well-known efficient algorithms such as for example
the algorithms proposed in [18] and [8]. Roughly speaking, the number Ns of spatial samples
quoted in [8] (that is the number of elements used to decompose the obstacle surface) of a fast
multipole method corresponds to the number 2(Lmax + 2)Lmax of vector spherical harmonics
and the number Nt of time steps in the time domain (see [8]) corresponds to the number
N1 · N2 · N3 of time-harmonic fields used in the frequency domain. Hence we can conclude
that with these identifications the computational cost of the algorithm proposed here is linear
in the number of time steps and in the number of spatial samples when these quantities go to
infinity. That is, our method compares favorably with the methods proposed in [8] and [18].
Moreover, the basic ideas of the fast multipole method can be used in the operator-expansion
method to generate what should be called ‘fast operator-expansion method’. This possibility
will be studied in a forthcoming paper.
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Moreover, we show some interesting speed-up factors (see Table 6) obtained when running
our method on a multiprocessor machine. The numerical results are discussed both from the
numerical and the physical point of view. The quantitative character of the numerical results
shown is established. Some animations relative to the numerical experience described above
can be found in the website: http://www.econ.unian.it/recchioni/w4/. In Section 7 we present
some final remarks and we suggest some ideas for further investigation.

2. The mathematical model

Let us begin by introducing some notations. Let R be the set of real numbers, N be a positive
integer and RN be the N dimensional real Euclidean space. Let x = (x1, x2, x3)

T ∈ R3 be a
generic vector, where the superscript T denotes the transposition operation. In R3 we denote
with (·, ·) the Euclidean scalar product, with ‖·‖ the corresponding Euclidean vector norm and
with [·, ·] the vector product. Sometimes we use (·, ·) and [·, ·] with complex vectors as argu-
ments to denote the real Euclidean scalar and vector product of complex vectors respectively.
Let C be the set of complex numbers, i be the imaginary unit, when z ∈ C we denote with
z the complex conjugate of z, with |z| the modulus of z and with Rf rake(z), Im(z) the real
and imaginary part of z respectively. Let a > 0 be a constant, Ba = {x ∈ R3| ‖x‖ < a} and let
∂Ba be its boundary. Let � ⊂ R3 be a bounded simply connected open domain with locally
Lipschitz boundary ∂� and let � be the closure of �. We observe that the domains with locally
Lipschitz boundary include polyhedra. The domain � is the obstacle that scatters the incoming
electromagnetic field. We assume that � contains the origin so that there exists a > 0 such
that Ba ⊂ �. We denote with χ ∈ R, χ ≥ 0, the electromagnetic boundary impedance
of ∂� and we assume that χ is a constant. When ∂� is a locally Lipschitz boundary, the
outward unit normal vector to ∂�, n(x) = (n1(x), n2(x), n3(x))T ∈ R3, x ∈ ∂� exists
almost everywhere on the boundary ∂� (see [34, Lemma 2.42, p. 88]). We consider R3 filled
with a homogeneous isotropic medium characterized by electric permittivity ε > 0, magnetic
permeability µ > 0 and zero electric conductivity. We assume ε, µ to be constants and the
free-charge density and the free current to be zero. When the obstacle � is present and the
incoming electromagnetic field (i.e., the electric field E i (x, t) and the magnetic induction
vector field Bi (x, t), (x, t) ∈ R3 × R) hits the obstacle �, a scattered electromagnetic field is
generated and we denote with E s(x, t), Bs(x, t), (x, t) ∈ (R3\�) × R the scattered electric
field and the scattered magnetic vector induction field, respectively. We use the M.K.S. unit
system (see [35, p. 16]) to write the necessary equations. We assume that the incoming elec-
tromagnetic field E i(x, t), B i(x, t), (x, t) ∈ R3 × R satisfies the Maxwell equations, that is,
Equations (1–4) in R3 × R. In these hypotheses the electromagnetic field E s(x, t), Bs(x, t),
(x, t) ∈ (R3\�) × R satisfies the following equations:(

curlE s + ∂Bs

∂t

)
(x, t) = 0, (x, t) ∈ (R3\�) × R, (1)

(
curlBs − 1

c2

∂E s

∂t

)
(x, t) = 0, (x, t) ∈ (R3\�) × R, (2)

div Bs(x, t) = 0, (x, t) ∈ (R3\�) × R, (3)

div E s(x, t) = 0, (x, t) ∈ (R3\�) × R, (4)
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with boundary condition (see [36, p. 1599]):

[n(x),E s(x, t)] − cχ[n(x), [n(x),Bs(x, t)]] = b(x, t), (x, t) ∈ ∂� × R, (5)

where:

b(x, t) = −[n(x),E i(x, t)] + cχ[n(x), [n(x),Bi(x, t)]], (x, t) ∈ ∂� × R, (6)

the following boundary condition at infinity:

E s(x, t) = O

(
1

r

)
, r → +∞, t ∈ R, (7)

and the radiation condition:

[Bs(x, t), ĉ] − 1

c
E s(x, t) = o

(
1

r

)
, r → +∞, t ∈ R, (8)

where 0 = (0, 0, 0)T , c = 1/
√

ε µ, curl, div and ∂/∂t denote, respectively, the curl, the
divergence operator with respect to the x variables and the time derivative, ĉ = x/‖x‖, x 	= 0,
r = ‖x‖, and o(·), O(·) are the Landau symbols. We note that the limit cases χ = 0, that
is a perfectly conducting obstacle, and χ = ∞, that is a perfectly insulating obstacle, can
be treated by adapting the boundary condition (5). In particular, when χ = ∞, the perfectly
insulating boundary condition is obtained by dividing (5) by χ and using the fact that 1/χ = 0
when χ = ∞. Condition (7) (see [35, p. 485]) says that when the sources of the scattered
electromagnetic field are located within a finite distance from the origin, that is on ∂�, the
intensity of E s must vanish when r → +∞. The radiation condition (8) says that the leading
order of the scattered electromagnetic field E s , Bs (see [35, p. 26]) is made of divergent
spherical waves as r → +∞. Moreover, condition (7) and (8) implies that Bs(x, t) = O

(
1
r

)
,

r → +∞, t ∈ R. Since the incoming electromagnetic field satisfies the Maxwell equations
(1–4) in R3 × R, we have that the incoming electric field and the magnetic vector induction
field E i , B i satisfy the vector wave equation in R3 ×R, and similarly E s , Bs satisfy the vector
wave equation in (R3\�) × R, that is, we have:

E i (x, t) = 1

(2π)4

∫
R

dω w(ω) exp(−iωt)

∫
∂B

ds(α)V (ω, α) exp(
iω

c
(x, α)), (x, t) ∈ R3 × R ,

(9)

Bi(x, t) = 1

(2π)4

∫
R

dω w(ω) exp(−iωt)

∫
∂B

ds(α)U(ω, α) exp(
iω

c
(x, α)), (x, t) ∈ R3 × R ,

(10)

where ds(α) is the surface measure on ∂B, w(ω) is a suitable positive real-valued function
that plays the role of a weight function and V (ω, α), U(ω, α) are suitable vector-valued
distributions. From Maxwell equations we have:

(V (ω, α), α) = 0, (U(ω, α), α) = 0, U(ω, α) = 1

c
[α, V (ω, α)], α ∈ ∂B,ω ∈ R . (11)

Note that the function w(ω) is redundant and is used here only to simplify the notation in the
following sections. When V (ω, α) has support in { (ω, α) ∈ R × ∂B | α = γ , γ ∈ ∂B },
the integrals in (9), (10) reduce to one-dimensional integrals. We assume that the scattered
electromagnetic field can be represented with formulae similar to (9), (10), that is:
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E s(x, t) = 1

(2π)4

∫
R

dω w(ω) exp(−iωt)

∫
∂B

ds(α)Es
ω,α(x), (x, t) ∈ (R3\�) × R , (12)

Bs(x, t) = 1

(2π)4

∫
R

dω w(ω) exp(−iωt)

∫
∂B

ds(α)Bs
ω,α(x), (x, t) ∈ (R3\�) × R . (13)

Note that, when the support of V (ω, α) satisfies the conditions specified previously, also
the integrals in (12), (13) reduce to one-dimensional integrals. Since E s , Bs are solutions
of problem (1–5), (7), (8), we have that for ω ∈ R, α ∈ ∂B, the functions Es

ω,α , Bs
ω,α are

solutions of the following exterior boundary-value problem:

curlEs
ω,α(x) − iωBs

ω,α(x) = 0 , x ∈ R3\� , (14)

curlBs
ω,α(x) + iω

c2
Es

ω,α(x) = 0 , x ∈ R3\� , (15)

with the boundary condition:

[n,Es
ω,α](x) − cχ[n, [n,Bs

ω,α]](x) = [n, bs
ω,α](x), x ∈ ∂�, (16)

where:

bs
ω,α(x) = exp(

iω

c
(x, α))

{−V (ω, α) + χ[n(x), [α, V (ω, α)]]} , x ∈ ∂�, (17)

and the radiation condition at infinity:

[Bs
ω,α, ĉ] − 1

c
Es

ω,α = o(
1

r
), r → +∞ . (18)

We note that the constants in formulae (14), (15) that is iω, iω/c2 are not the usual ones
obtained when the Maxwell equations are written for the electric and the magnetic fields as
unknowns. In fact, we started from the Maxwell equations written for the electric field and the
magnetic induction vector as unknowns (see (1), (2)). We note that for ω ∈ R, α ∈ ∂B the
vector bs

ω,α(x), is defined almost everywhere in x for x ∈ ∂� and that equation (18), together
with the time-harmonic Maxwell equations (14), (15), implies (7) and (8) when the integrals
in (12), (13) are well-behaved. It is easy to see that, for ω ∈ R, α ∈ ∂B, (14–16), (18) imply
that Es

ω,α satisfies the following exterior boundary-value problem:

(�Es
ω,α + (

ω

c
)2Es

ω,α)(x) = 0, x ∈ R3\� , (19)

divEs
ω,α(x) = 0, x ∈ R3\� , (20)

[n,Es
ω,α](x) − χc

iω
[n, [n, curlEs

ω,α]](x) = [n, bω,α](x), x ∈ ∂�, (21)

[curlEs
ω,α, x̂] − i

ω

c
Es

ω,α = o

(
1

r

)
, r → +∞, (22)

where ω/c is the wave number, � denotes the Laplace operator � = ∑3
i=1 ∂2/∂x2

i acting on
each component of the vector Es

ω,α , that is Es
ω,α = (Es

ω,α,1, E
s
ω,α,2, E

s
ω,α,3)

T and �Es
ω,α =

(�Es
ω,α,1,�Es

ω,α,2,�Es
ω,α,3)

T .
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Equation (19) is called vector Helmholtz equation. We note that when χ = ∞, that is,
when the obstacle is perfectly insulating, the boundary condition (21) can be rewritten, by
dividing both sides by χ and using the fact that 1/χ = 0 when χ = ∞. When χ = 0,
that is, when the obstacle is perfectly conducting, the boundary condition (21) makes sense
for ω ∈ R. When χ 	= 0 the boundary condition (21) makes sense for ω 	= 0; in order to
deal with the case ω = 0, we multiply Equation (21) by ω when ω 	= 0 and we note that
the boundary condition obtained by multiplying (21) by ω makes sense, even when ω = 0.
Moreover, for ω ∈ R, α ∈ ∂B, when Es

ω,α is the solution of the exterior boundary-value
problem (19–22) from (14), we have:

Bs
ω,α(x) = − i

ω
curlEs

ω,α(x), x ∈ R3\� . (23)

When necessary, the division by ω in (23) must be interpreted using the theory of distributions.
From now on we treat explicitly only the case χ 	= ∞ and ω 	= 0. The remaining cases

can be treated analogously, and are omitted to keep the exposition simple.

3. The basic ideas of the method

Let us explain the basic ideas (i1) and (i2) of the method that we propose in this paper.
Let (r, θ, φ) be the canonical spherical coordinates in R3, for α ∈ ∂B let z = cos θ ,

0 ≤ θ ≤ π , we have:

α(z, φ) = (cos φ sin cos−1 z, sin φ sin cos−1 z, z)T ,−1 ≤ z ≤ 1, 0 ≤ φ < 2π. (24)

Let N1, N2, N3 be three positive integers, ωN1 = (ω1, ω2, . . . , ωN1)
T ∈ RN1 , φN2 = (φ1, φ2,

. . . , φN2)
T ∈ RN2 , zN3 = (z1, z2, . . . , zN3)

T ∈ RN3 , be such that (ωi, φj , zk), i = 1, 2, . . . ,

N1, j = 1, 2, . . . , N2, k = 1, 2, . . . , N3 are the nodes of a quadrature rule on R × ∂B, and let

αj,k = (cos φj sin cos−1 zk, sin φj sin cos−1 zk, zk)
T , j = 1, 2, . . . , N2, k = 1, 2, . . . , N3.

(25)

Let A ∈ RN1×N2×N3 be the multilinear transformation that contains the weights of the quad-
rature rule, that is (A)i,j,k = ai,j,k , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, k = 1, 2, . . . , N3, are
the weights of the quadrature rule.
The basic idea (i1) of the method is to approximate the integral appearing in (9), (10), and
(12), (13) by a quadrature rule of the type described above, that is, we consider the following
approximation for the scattered electromagnetic field:

E s(x, t) ≈ 1

(2π)4

N1∑
i=1

N2∑
j=1

N3∑
k=1

ai,j,k exp(−iωit)E
s
ωi,αj,k

(x), (26)

Bs(x, t) ≈ 1

(2π)4

N1∑
i=1

N2∑
j=1

N3∑
k=1

ai,j,k exp(−iωit)B
s
ωi ,αj,k

(x). (27)

Note that the choice of the quadrature formula (see (26), (27)) depends on the weight function
w appearing in (9), (10) and (12), (13) when the remaining functions depending on ω in those
integrals are well-behaved.
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The second basic idea of the method (i2) is the formulation of a new ‘operator expansion
method’ to compute the solution Es

ω,α of the boundary-value problem (19–22) for (ω, α) =
(ωi, αj,k), i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, k = 1, 2, . . . , N3. From the knowledge
of Es

ω,α the solution of the time-harmonic Maxwell equations (14), (15) is obtained using
Equation (23).

Summing up, we approximate the solution of the time-dependent Maxwell equations (1–5),
(7), (8) by the linear combination coming from the quadrature rule chosen from the solu-
tions of the N1 · N2 · N3 boundary-value problems for the time-harmonic Maxwell equations
(14–16), (18) or equivalently (19–23). The time-harmonic exterior boundary-value problems
considered are independent one from the other and can be solved in parallel, that is, condition
(r4) is fulfilled. Moreover, since the ‘operator expansion’ method is highly parallelizable,
also the computation of each time-harmonic electromagnetic scattered field Es

ω,α(x), Bs
ω,α(x),

(ω, α) = (ωi, αj,k), i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, k = 1, 2, . . . , N3, can be done
efficiently in parallel.

Note that the integral representation formulae (12) and (13) in some sense imply the as-
sumption of the Courant-Friedrichs and Levy stability condition on the space and time steps.
Thanks to these representation formulae, the use of a suitable quadrature rule and the use of
the ‘operator expansion method’, conditions (r2) and (r4) are fulfilled.

Now we give a detailed description of the ‘operator expansion’ method used.
The ‘operator expansion’ method used here is based on the following assumptions (see

[21, Section 1]):
a) � is a bounded obstacle whose boundary is a starlike surface with respect to the origin, that
is:

� = {x = rx̂ ∈ R3| 0 ≤ r < ξ(x̂), x̂ ∈ ∂B}, (28)

∂� = {x = rx̂ ∈ R3| r = ξ(x̂), x̂ ∈ ∂B}, (29)

where ξ(x̂) > 0, x̂ ∈ ∂B is a single-valued sufficiently regular function defined on ∂B.
b) For each ω ∈ R there exists Ba with 0 < a = a(ω) < 1 such that � ⊃ Ba(ω), ∪ω∈RBa(ω) ⊂
� and the solution Es

ω,α of (19–22) defined for x ∈ R3\� can be extended to x ∈ R3 \ Ba(ω)

remaining a divergence-free vector-field solution of the vector Helmholtz equation in R3 \
Ba(ω). We denote this extension of Es

ω,α(x) with Fω,α(x), and we assume that Fω,α(x) can be
represented as follows:

Fω,α(x) = a2curlx

∫
∂B

�ω(x, aŷ)vω,α(ŷ)ds(ŷ), x ∈ R3\Ba , (30)

where, to avoid confusion, we write curlx to mean the curl operator with respect to the x

variable, vω,α(ŷ) is a suitable vector-density function and finally:

�ω(x, y) = ei ω
c
‖x−y‖

4π‖x − y‖ , x 	= y , (31)

is the fundamental solution of the Helmholtz equation in R3 with the Sommerfeld radiation
condition at infinity.

The previous assumptions a) and b) are sufficient conditions to develop the operator-
expansion method. The operator-expansion method can be developed under more general
conditions. We note that, for any choice of vω,α that enables us to differentiate under the
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integral sign in (30), we have that the vector field Fω,α(x) in (30) is a divergence-free vector-

field solution of the vector Helmholtz equation for x ∈ R3\Ba so that Fω,α(x) satisfies (19),
(20); moreover Fω,α(x) satisfies the radiation condition at infinity (22), i.e., condition (r1) is
satisfied.

We determine the vector density function vω,α(ŷ) appearing in (30) by imposing the bound-
ary condition (21), that is, imposing that Fω,α(x) extends Es

ω,α(x) and we solve the resulting
integral equation using a formal power-series expansion with respect to ‖x‖ having ∂B =
{x ∈ R3| ‖x‖ = 1} as base point (see Section 4). This is the ‘operator expansion’ method.
Moreover, as shown in Section 5 (see formulae (56), (57)), the coefficients of the series
expansion of Fω,α(x) in powers of ‖x‖ − 1 are independent of the choice of the radius a

of the sphere Ba.
We conclude this section noting that the proposed method allows us to solve many different

problems. In particular, in the numerical experiments shown in Section 6, we use the numerical
method proposed to solve problem (1–5), (7), (8) in two particular cases. That is, we consider
the following two electromagnetic incident fields:

E i (x, t) = P exp(i
ω∗

c
[(γ , x) − ct]), (x, t) ∈ R3 × R, (32)

Bi(x, t) = 1

c
[γ , P ] exp(i

ω∗

c
[(γ , x) − ct]), (x, t) ∈ R3 × R, (33)

and

E i (x, t) = P exp(− 1

4ζ 2
[(γ , x) − ct]2), (x, t) ∈ R3 × R, (34)

Bi(x, t) = 1

c
[γ , P ] exp(− 1

4ζ 2
[(γ , x) − ct]2), (x, t) ∈ R3 × R, (35)

where γ ∈ ∂B is a given vector, ω∗, ζ > 0 are given constants, and P ∈ R3 is a given vector
such that:

(P , γ ) = 0. (36)

The incident electromagnetic field (32), (33) is the field associated with a time-harmonic
linearly polarized incoming plane wave, the vector γ is the propagation direction and P is
the polarization vector of the incident electric field. We note that in this case in formula (9) we
can choose V (ω, α) = (2π)4Pδ(α − γ )δ(ω − ω∗), w(ω) = 1, where δ is the ‘Dirac’s delta’
function. With abuse of notation we denote by δ the ‘Dirac’s delta’ function on R3, or on R,
or on ∂B.

In the case (34), (35) in formula (9) we can choose V (ω, α) = ((2π)4/
√

π)P δ(α − γ )

and w(ω) = ζ exp(−ζ 2ω2), and the incoming electromagnetic field is a linear superposition
of time-harmonic plane waves propagating in the direction γ with polarization vector P .

In the numerical experiments shown in Section 6, when we choose the electromagnetic
incident field to be given by (32), (33) in formulae (12), (13), there are no integrals to compute,
that is, no quadrature rule is needed. When we choose the incident field to be given by (34),
(35), the integrals (9), (10), (12), (13) reduce to one-dimensional integrals in the variable ω

with w(ω) = ζ exp(−ζ 2ω2), that is, only the integral in the variable ω must be computed by
numerical quadrature.
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We make this choice of the weight function, since it is a natural one due to the particular
form of the Fourier transform of the electromagnetic incident field (34), (35). In fact, since
we have w(ω) = ζ exp(−ζ 2ω2), ζ > 0, ω ∈ R, we use the Gauss-Hermite quadrature rule to
compute the integrals in the ω variable, and we compute the solution Es

ω,α of the boundary-
value problem (19–22) with α = γ and ω = ωi , i = 1, 2, . . . , N1 via the ‘operator expansion’
method. We note that for these two classes of incident electromagnetic fields we can choose
N2 = N3 = 1 with great savings in computer time.

Furthermore, we note that the method proposed can be applied also when the incident field
includes evanescent waves. In this case a large number of time-harmonic electromagnetic
fields must be used in order to get a satisfactory approximation of the incident field in a com-
pact region surrounding the obstacle. However, probably in this case representation formulae
more appropriate than formulae (9) and (10), that is, more appropriate than expansions in
plane waves, can be considered.

4. The expansion of the time-harmonic electromagnetic field

In this section we solve the exterior boundary-value problem for the vector Helmholtz equa-
tion (19–22) for a given value of the wave number (ω

c
) 	= 0 and for a given propagation

direction α ∈ ∂B of the incoming time-harmonic linearly polarized electromagnetic plane
wave. We note that, when ω

c
= 0 and χ is a finite nonzero constant, we have E0,α(x) ≡ 0,

α ∈ ∂B. When ω
c

= 0 and χ = ∞ or χ = 0, the boundary condition (21) must be changed as
discussed in Section 2 and E0,α(x) will not be equal to zero in general. Now let χ be a finite
nonzero constant, 0 < a < 1, Ba and ∂� be as specified in Section 3; in particular, let us
assume that Ba ⊂ � and that (29) holds. We take a < 1 since we want to be able to choose
� = B. We assume that the solution Es

ω,α of the exterior boundary-value problem (19–22),
can be extended to x ∈ R3\Ba remaining a divergence-free vector-field solution of the vector
Helmholtz equation in R3\Ba and that this extension F ω,α(x) is given by formula (30), where
we assume that the density vω,α(ŷ) is tangential to ∂B, that is:

(vω,α(ŷ), ŷ) = 0 , ŷ ∈ ∂B . (37)

We note that condition (r1) is fulfilled and that condition (37) is required to determine uniquely
the vector-density function vω,α(ŷ). In fact, as we will show in Section 5, the component of
the vector-density function vω,α(ŷ) in the radial direction x̂ ∈ ∂B is not uniquely determined
by the condition that Fω,α(x) is an extension of Es

ω,α(x). With abuse of notation, when vω,α

is a complex vector-valued function in Equation (37), the scalar product must be interpreted
as the real Euclidean scalar product of complex vectors.

We note that for any choice of the vector-density function vω,α that makes possible differ-
entiation under the integral sign in (30) we have that Fω,α satisfies Equations (19) and (20) in

R3\Ba and the radiation condition at infinity (22).
We determine vω,α by imposing that Fω,α extends Es

ω,α , that is, imposing the boundary
condition (21):

[n, F ω,α](x) − χc

iω
[n, [n, curlxFω,α]](x) = [n, bω,α](x), x ∈ ∂�, (38)

where bω,α is the vector field given by (17). We note that, when ∂� is only a locally Lipschitz
surface, Equation (38) holds only almost everywhere in x for x ∈ ∂� (see [34, Lemma 2.42,
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p. 88]). Equation (38) can be viewed as a linear integral equation in the unknown vω,α . This is
the integral equation discussed in Section 1 that we want to solve with the ‘operator expansion’
method. That is, we solve Equation (38) using a perturbative series with base point ∂B = { x ∈
R3 | ‖x‖ = 1 }; in particular, we assume that the following formal series expansion for the
vector density vω,α(ŷ) holds:

vω,α(ŷ) =
+∞∑
s=0

(ξ(ŷ) − 1)s

s! vω,α,s(ŷ), ŷ ∈ ∂B , (39)

where we assume 0! = 1 and the ‘coefficients’ of the expansion vω,α,s(ŷ), ŷ ∈ ∂B, s =
0, 1, . . . are vector fields tangential to ∂B to be determined. That is, Equation (37) holds order
by order in the expansion in powers of (ξ − 1).

In the following with abuse of notation we use ξ as an independent variable so that the
notation O((ξ − 1)ν), ν ≥ 0 when ξ → 1 is a meaningful notation.

From now on we take curlx and ∂
∂‖x‖ outside and inside of the integral signs as needed,

that is, we assume that the integrals are sufficiently well-behaved to make these operations
legitimate.

Let e(x̂), x̂ ∈ ∂B be an absolutely integrable vector function with respect to the surface
measure defined on ∂B and tangential to ∂B, that is:

(e(x̂) = 0, x̂ ∈ ∂B ; (40)

for 0 < a < 1 we define the operators pω,s , qω,s , s = 0, 1, . . ., as follows:

(pω,se)(x) = a2
∫

∂B

∂s

∂‖x‖s
curlx�ω(x, aŷ)e(ŷ)ds(ŷ), ‖x‖ > a, s = 0, 1, . . . , (41)

(qω,se)(x) = a2
∫

∂B

∂s

∂‖x‖s
curlxcurlx�ω(x, aŷ)e(ŷ)ds(ŷ), ‖x‖ > a, s = 0, 1, . . . , (42)

and the operators p̂ω,s , q̂ω,s , are defined as follows:

(p̂ω,se)(x̂) = (pω,se)(x̂), x̂ ∈ ∂B, s = 0, 1, . . . , (43)

(q̂ω,se)(x̂) = (qω,se)(x̂), x̂ ∈ ∂B, s = 0, 1, . . . . (44)

Finally we define the operator l̂ω that maps tangential vector fields defined on ∂B into tangen-
tial vector fields defined on ∂B via the following equation:

[x̂, (p̂ω,0(l̂ωe))(x̂)] − χ
c

iω
[x̂, [x̂, (q̂ω,0(l̂ωe))(x̂)]] = e(x̂), x̂ ∈ ∂B, (45)

where p̂ω,0, q̂ω,0 are the operators defined in (43), (44) with s = 0. We can prove that the
following relations hold:

(ξ − 1)s

s! vω,α,s(x̂) = (l̂ωz
ω,α,s

)(x̂), s = 0, 1, . . . , x̂ ∈ ∂B, ω ∈ R, α ∈ ∂B, (46)

where the vector fields z
ω,α,s

, s = 0, 1, . . ., are defined by recursion from the datum bω,α(x),
x ∈ ∂� imposing that Equation (38) holds order by order in powers of (ξ − 1).

Note that Equation (45) leaves undetermined the radial component of the unknown vector
field l̂ωe, so that, by imposing that l̂ωe is a tangential vector field to ∂B, we choose this
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component to be equal zero. We note that Equation (45) coincides with Equation (38) when
∂� = ∂B and that in (38) we have e(x̂) = [x̂, bω,α(x̂)], x̂ ∈ ∂B, where bω,α is given by
(17). We note that Equation (45) holds on ∂B. This fact and the character of the operators
p̂ω,0, q̂ω,0, makes possible to reduce the solution of (45) to the solution of an ‘easy’ linear
system by choosing appropriately the basis used to represent the integral operators p̂ω,0, q̂ω,0

(see Section 5). The basis to be chosen is the basis of the vector spherical harmonics; a similar
simple choice is not possible when we approximate the integrals in (38) by finite sums or when
∂Ba is not chosen as reference surface in (30) and ∂B is not chosen as base point of the power-
series expansion. From formulae (30) and (46), using the expansion (39), the expansions of
curlx{�ω(x, aŷ)vω,α(ŷ)} and of curlxcurlx{�ω(x, aŷ)vω,α(ŷ)} in powers of (‖x‖−1) and the
Cauchy product rule between series, we have:

Fω,α(x) =
+∞∑
s=0

s∑
l=0

(‖x‖ − 1)s−l

(s − l)!
(
p̂ω,s−l(l̂ωz

ω,α,l
)
)

(x̂) , x ∈ R3\Ba , (47)

and

curlxF ω,α(x) =
+∞∑
s=0

s∑
l=0

(‖x‖ − 1)s−l

(s − l)!
(
q̂ω,s−l(l̂ωz

ω,α,l
)
)

(x̂) , x ∈ R3\Ba . (48)

Note that the vector fields Fω,α(x) and curlxFω,α(x) are known when the vector functions

(p̂ω,s−ν(l̂ωz
ω,α,ν

))(x̂), (q̂ω,s−ν(l̂ωz
ω,α,ν

))(x̂), x̂ ∈ ∂B, s = 0, 1, . . ., ν = 0, 1, . . . , s are
determined. In the hypotheses specified previously when |ξ(x̂) − 1|, x̂ ∈ ∂B is sufficiently
small, we have that the series (39), converges, that is, formulae (47) and (48) hold.

5. The computational method

Let L2(∂B) be the space of square integrable functions with respect to the surface measure
defined on ∂B, and let {Bσ,m,l(x̂), Cσ,m,l(x̂), P σ,m,l(x̂)}σ=0,1, l=σ,σ+1,..., m=σ,...,l , x̂ ∈ ∂B be the
complete orthonormal set of (L2(∂B))3 made of the vector spherical harmonic functions (see
[39, Chp. 13, p. 1898]); in this section we give a simple expansion with respect to this basis
of the vector field F ω,α(x) defined in formula (30). We show that the use of this basis allows

us to represent the operators p̂ω,s , q̂ω,s , s = 0, 1, . . ., l̂ω by simple infinite matrices.
Let hl(y), jl(y), y ∈ C, l = 0, 1, 2, . . . be the spherical Hankel and the spherical Bessel

functions, respectively, and let h
(ν)
l (y) = dνhl(y)/dyν , y ∈ C, ν = 0, 1, . . ., l = 0, 1, . . .; we

define the following quantities:

rω,s,l = (
ω

c
)s

s∑
ν=0

s!
(s − ν)! (−1)ν

h
(s−ν)
l (ω

c
)

(ω
c
)ν+1

, ω ∈ R, s = 0, 1, . . . , l = 0, 1, . . . , (49)

dω,1,l = ((l + 1)hl(
ω

c
) − ω

c
hl+1(

ω

c
)) − χ

i

ω

c
hl(

ω

c
), ω ∈ R, l = 0, 1, . . . , (50)

and finally:

dω,2,l = hl(
ω

c
) + χc

iω
((l + 1)hl(

ω

c
) − ω

c
hl+1(

ω

c
)), ω ∈ R, l = 0, 1, . . . . (51)

It is easy to see ([38, p. 439]) that when χ ≥ 0 we have:
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dω,1,l 	= 0, dω,2,l 	= 0, ω ∈ R, l = 0, 1, . . . . (52)

Let e be a locally integrable vector field defined on ∂B and tangential to ∂B, i.e., Equa-
tion (40) holds, then the following expansion of e holds:

e(x̂) =
1∑

σ=0

+∞∑
l=1

l∑
m=σ

{eCσ,m,l
Cσ,m,l(x̂) + eBσ,m,l

Bσ,m,l(x̂)}, x̂ ∈ ∂B, (53)

where {eCσ,m,l
, eBσ,m,l

}, σ = 0, 1, l = 1, 2, . . ., m = σ, σ + 1, . . . , l are the generalized Fourier
coefficients of e with respect to the basis of vector spherical harmonics. Let the operators
p̂ω,s , q̂ω,s , s = 0, 1, 2, . . ., l̂ω be given by (43), (44), (45), with an involved but elementary
computation using the free space Green’s dyadic formula (see [39, Chapter 13, p. 1875]) we
obtain:

(p̂ω,s(l̂ω(e))(x̂) =
1∑

σ=0

+∞∑
l=1

l∑
m=σ

{
−P σ,m,l(x̂)eCσ,m,l

(ω
c
)
√

l(l + 1)rω,s,l

dω,1,l

+Cσ,m,l(x̂)eBσ,m,l
(ω

c
)sh

(s)
l (ω

c
)

dω,2,l

−
Bσ,m,l(x̂)eCσ,m,l

(ω
c
)
(
(l + 1)rω,s,l − (ω

c
)sh

(s)

l+1(
ω
c
)
)

dω,1,l

}
,

s = 0, 1, . . . , x̂ ∈ ∂B,

(54)

(q̂ω,s(l̂ωe))(x̂) =
1∑

σ=0

+∞∑
l=1

l∑
m=σ

{
P σ,m,l(x̂)eBσ,m,l

(ω
c
)
√

l(l + 1)rω,s,l

dω,2,l

−

Cσ,m,l(x̂)eCσ,m,l
(ω

c
)s+2h

(s)
l (ω

c
)

dω,1,l

+
Bσ,m,l(x̂)eBσ,m,l

(ω
c
)
(
(l + 1)rω,s,l − (ω

c
)sh

(s)

l+1(
ω
c
)
)

dω,2,l

}
,

s = 0, 1, . . . , x̂ ∈ ∂B.

(55)

We note that, when ω goes to zero, the operators in (54), (55) are well-defined and non-zero,
since the limits limω→0 ωνh

(ν)
l (ω/c)/hl(ω/c), ν = 0, 1, . . ., l = 1, 2, . . ., are finite and not

zero. Moreover, using the free space Green’s dyadic formula, we get the following expansions
in vector spherical harmonics of the vector field Fω,α,s(x), x ∈ R3\Ba , and of its curl:

Fω,α(x) =
+∞∑
s=0

1∑
σ=0

+∞∑
l=1

l∑
m=σ

{
−Pσ,m,l (x̂)zω,α,s,Cσ,m,l

√
l(l + 1)hl((

ω
c )‖x‖)

‖x‖dω,1,l
+ Cσ,m,l(x̂)zω,α,s,Bσ,m,l

hl ((
ω
c )‖x‖)

dω,2,l

−Bσ,m,l (x̂)zω,α,s,Cσ,m,l

(l + 1)hl((
ω
c )‖x‖) − ( ω

c )‖x‖hl+1(( ω
c )‖x‖)

‖x‖dω,1,l

}
, x = ‖x‖x̂, x̂ ∈ ∂B, ‖x‖ > a,

(56)

and

curlxFω,α(x) =
+∞∑
s=0

1∑
σ=0

+∞∑
l=1

l∑
m=σ

{
Pσ,m,l (x̂)zω,α,s,Bσ,m,l

√
l(l + 1)hl ((

ω
c )‖x‖)

‖x‖dω,2,l
− Cσ,m,l(x̂)zω,α,s,Cσ,m,l

( ω
c )2hl((

ω
c )‖x‖)

dω,1,l

+Bσ,m,l (x̂)zω,α,s,Bσ,m,l

(l + 1)hl ((
ω
c )‖x‖) − ( ω

c )‖x‖hl+1( ω
c )‖x‖)

‖x‖dω,2,l

}
, x = ‖x‖x̂, x̂ ∈ ∂B, ‖x‖ > a , (57)

where zω,α,s,Cσ,m,l
, zω,α,s,Bσ,m,l

are the generalized Fourier coefficients of z
ω,α,s

, that is the vector
field appearing in (46).
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Note that for every fixed value of s ≥ 0, ω ∈ R, α ∈ ∂B, the generalized Fourier coeffi-
cients zω,α,s,Cσ,m,l

= ∫
∂B

(z
ω,α,s

(x̂), Cσ,m,l(x̂))ds(x̂), zω,α,s,Bσ,m,l
= ∫

∂B
(z

ω,α,s
(x̂), Bσ,m,l(x̂))ds

(x̂) σ = 0, 1, l = 1, 2, . . ., m = σ, σ + 1, . . . , l are double integrals independent one from
the other so that they can be computed in parallel.

Let N1, N2, N3 be positive integers, ωN1 , φN2 , zN3 be as specified in Section 3 and αj,k,
j = 1, 2, . . . , N2, k = 1, 2, . . . , N3, be given by (25), let Lmax > 0 be a positive integer,
let zω,α,s,Cσ,m,l

, zω,α,s,Bσ,m,l
, s = 0, 1, . . ., σ = 0, 1, l = 1, . . . , Lmax, m = σ, . . . , l be given

by (56), and finally let S be a positive integer. Using formulae (54), (55) into formulae (47),
(45), we can approximate the scattered electromagnetic field E s , Bs with the following vector
fields, respectively:

VS,N1,N2,N3
Lmax

(x, t) = 1

(2π)4

N1∑
i=1

exp(−iωit)

N2∑
j=1

N3∑
k=1

ai,j,kF
S,Lmax
ωi ,αj,k

(x), (x, t) ∈ (R3 \ �) × R ,

(58)

US,N1,N2,N3
Lmax

(x, t)= 1

(2π)4

N1∑
i=1

exp(−iωit)

N2∑
j=1

N3∑
k=1

ai,j,kcurlxF
S,Lmax
ωi ,αj,k

(x), (x, t)∈(R3 \ �)×R ,

(59)

where F S,Lmax
ω,α (x) is the series given in (56) truncated at the S-th order:

F
S,Lmax
ω,α (x) =

S∑
s=0

1∑
σ=0

Lmax∑
l=1

l∑
m=σ

{
−Bσ,m,l(x̂)zω,α,s,Cσ,m,l

(l + 1)hl((
ω
c )‖x‖) − (ω

c )‖x‖hl+1((ω
c )‖x‖)

‖x‖dω,1,l
−

−Pσ,m,l(x̂)zω,α,s,Cσ,m,l

√
l(l + 1)hl((

ω
c )‖x‖)

‖x‖dω,1,l
+ Cσ,m,l(x̂)zω,α,s,Bσ,m,l

hl((
ω
c )‖x‖)

dω,2,l

}
,

α ∈ ∂B,ω ∈ R, x = ‖x‖x̂, x̂ ∈ ∂B, ‖x‖ > a.

(60)

6. Numerical results

We present some numerical results obtained by applying the computational method described
in Sections 3–5 to solve in some test cases the three-dimensional time-dependent electro-
magnetic-scattering problem described in Section 2.

We consider scattering phenomena generated by the incident electromagnetic fields E i , B i

given by (32), (33), or by (34), (35) and we discuss the numerical results obtained both from
a physical and a numerical point of view. The quantitative character of the results obtained is
established. In particular, some animations relative to the numerical experiments presented can
be seen on the website: http://www.econ.unian.it/recchioni/w4/. These animations clarify the
physical meaning of the numerical experience shown. Figure 3 is taken from the animations.

Let P ∈ R3, γ ∈ ∂B be the vectors appearing in (32), (33), or in (34), (35). In the numerical
experience shown here we choose P = (1, 0, 0)T , γ = (0, 0, 1)T , c = 1 and ∂B as base point
of the expansions (47), (48). We note that the value of a that defines the sphere Ba involved
in the representation formula (30) is never used in the computational method and can be left
undetermined. In the case of the test problems that use (32), (33) as incident electromagnetic
field no numerical quadrature in the ω ∈ R and α ∈ ∂B variables is involved, since the incident
electromagnetic field is time-harmonic and we assume that the corresponding scattered field
is time harmonic with the same frequency, that is:
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E s(x, t) = Eω∗,γ (x) exp(−iω∗t), (x, t) ∈ R3\� ,Bs(x, t) = Bω∗,γ (x) exp(−iω∗t),

(x, t) ∈ R3\� , (61)

where Eω∗,γ , Bω∗,γ are the space-dependent parts of the scattered time-harmonic electromag-
netic field.

In the case of the test problems that use (34), (35) as incident electromagnetic field the
integrals in (12), (13) reduce to one-dimensional integrals in the variable ω ∈ R, that is,
N2 = N3 = 1, α1,1 = γ , and w(ω) = ζ exp(−ζ 2ω2), so that we choose the quadrature rule
in (26), (27) to be the Gauss-Hermite quadrature formula (see [37, p. 114]), that is, ωi , ai,1,1,
i = 1, 2, . . . , N1 are the zeros of the Hermite polynomial of degree N1 and the weights of the
Gauss-Hermite quadrature formula, respectively.

Let (xj , tk) ∈ R3 × R, j = 1, 2, . . . , 203, k = 1, 2, . . . , 40 be a rectangular grid of the
set [−2, 2] × [−2, 2] × [−2, 2] × [−3, 7] with stepsize with respect to the spatial variables
(i.e., the first three variables) equal to 4/20 and with stepsize with respect to the time variable
(i.e., the last variable) equal to 10/40. Since in (34), (35) the vector P is independent of the
variables x and t , we choose N1 as in [21] Section 4, that is, we consider the approximation
sa
γ (x, t) of the function sγ (x, t) = exp(− 1

4ζ 2 [(γ , x) − ct]2), (x, t) ∈ R3 × R given by:

sa
γ (x, t) =

N1∑
j=1

aj,1,1 exp

(
iωj

cζ
[(x, γ ) − ct]

)
, (x, t) ∈ R3 × R , (62)

and we take N1 = 400, since this guarantees that we have:[∑203

j=1

∑40
k=1 | sa

γ (xj , tk) − sγ (xj , tk) |2
]1/2

[∑203

j=1

∑40
k=1 | sγ (xj , tk) |2

]1/2 ≤ 10−3 , (63)

when ζ = 1. We consider the following obstacles:

1. Sphere r = ξ1(x̂(θ, φ)) = 1, 0 ≤ θ ≤ π , 0 ≤ φ < 2π , (see Figure 2 (1));

2. Corrugated Sphere r = ξ2(x̂(θ, φ)) = 1 + h sin2 2θ | cos 2φ |, 0 ≤ θ ≤ π , 0 ≤ φ < 2π ,
(see Figure 2 (2) h = 0·7);

3. Cut octahedron (see Figure 2 (3));

4. Holed Sphere (see Figure 2 (4));

5. Corrugated surface:

r = ξ4(x̂(θ, φ)) = 1 + 0·1
∣∣∣∣∣∣

10∑
j=1

1

j 3
exp(ij (φ + θ))

∣∣∣∣∣∣ , 0 ≤ θ ≤ π, 0 ≤ φ < 2π. (64)

Note that this obstacle is not represented in Figure 2. We omit the analytical expression of the
surfaces of Obstacle 3, the cut octahedron and of Obstacle 4, the holed sphere, since they are
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Figure 3. ‘Resonance Phenomenon’: the incoming magnetic induction field Bi (a) (γ = (0, 0, 1)T ,
P = (1, 0, 0)T , ζ 2 = 1) and the components of the corresponding scattered magnetic induction field Bs (b),
(c), (d) generated by a perfectly conducting holed sphere are shown. The arrows in column (a) represent Bi .
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involved. We note that the origin has been chosen as the center of mass of the obstacles in
the cases 1, 2, 3, 5 and that the largest sphere with center the origin contained in the cutted
octahedron has radius 1. Moreover, the holed sphere is made of a sphere with center the origin
and radius one with a cavity. The cavity is obtained by removing from the sphere of radius
one and center the origin its intersection with a sphere with center located in the negative
x1-direction at distance from the origin 1/ cos π

36 and radius tan π
36 .

The obstacles 2–5 have boundaries that are not continuously differentiable, but are only
locally Lipschitz surfaces. Obstacle 1, the sphere, has a smooth boundary.

In order to choose the integer Lmax appearing in formulae (58–60), we use the analysis
shown in [19, Section 4] where it is shown that the integer Lmax must increase when the
geometry of the obstacle is of increasing complexity and we study the behavior of the approx-
imation FS,Lmax

ω,γ of Fω,γ given by (60) when we choose α = γ . This study leads us to choose
Lmax = 16.

Furthermore, let F = (F1, F2, F3)
T be a complex vector and we define |F | = [∑3

i=1|Fi|2]1/2; we consider a perfectly conducting sphere of radius one when γ = (0, 0, 1)T ,
P = (1, 0, 0)T . Further let F L1

ω,γ = (F
L1
1,ω,γ , F

L1
2,ω,γ , F

L1
3,ω,γ )T be the truncated expansion in

vector spherical harmonics of the space dependent part of the scattered electric field given in
[39, p. 1882], that is F L1

ω,γ contains only the vector spherical harmonics with l ≤ L1 of the
expression given in [39, p. 1182]. Note that in the case of the sphere the coefficients of the
expansion are given by an explicit formula. Let F 0,L1

ω,γ be the scattered electric field computed
by the method presented in Sections 3–5 when in formula (56) we truncate the sum in l to
l ≤ Lmax = L1. We consider only the zeroth order term in (56), since this is the only nonzero
term of the expansion. In fact, in this case the boundary of the obstacle and the base point of
the expansion are both equal to ∂B. Let L1 be a positive integer and we define:

ε
L1
i,Fω,γ

=



∑203

j=1 |FL1
i,ω,γ (xj ) − F

0,L1
i,ω,γ (xj )|2∑203

j=1 |FL1
i,ω,γ (xj )|2




1/2

, i = 1, 2, 3. (65)

We study the behavior of ε
L1
i,Fω,γ

, i = 1, 2, 3, L1 = 16, for several values of ω, that is

ω = 1, 2, 4, 8 (see Table 1). Table 1 shows that the difference between F
L1
i,ω,γ and F

0,L1
i,ω,γ ,

i = 1, 2, 3, is of the order of magnitude of the error due to the quadrature rule used to
compute the generalized Fourier coefficients zω,α,s,Cσ,m,l

= ∫
∂B

(z
ω,α,s

(x̂), Cσ,m,l(x̂))ds(x̂),

zω,α,s,Bσ,m,l
= ∫

∂B
(z

ω,α,s
(x̂), Bσ,m,l(x̂))ds(x̂), σ = 0, 1, l = 1, . . . , 16, m = σ, . . . , l, s = 0,

of the expansion in vector spherical harmonics appearing in (56). That is, L1 = 16 is a
satisfactory choice.

Now we show some evidence of the quantitative character of the results obtained using
expansion (46). We analyze the convergence of the series

∑+∞
s=0 zω,γ ,s,Cσ,l,m

,
∑+∞

s=0 zω,γ ,s,Bσ,l,m
,

σ = 0, 1, l = 1, 2, . . . , Lmax, m = σ, σ + 1, . . . , l, in some test cases. First we compare the
analytical expression of the generalized Fourier coefficients z∗

ω,γ ,Cσ,l,m
, z∗

ω,γ ,Bσ,l,m
, σ = 0, 1,

l = 1, 2, . . . , Lmax, m = σ, . . . , l given in [39, p. 1882] with the numerically computed
coefficients

∑S
s=0 zω,γ ,s,Cσ,l,m

,
∑S

s=0 zω,γ ,s,Bσ,l,m
, σ = 0, 1, l = 1, 2, . . . , Lmax, m = σ, σ +

1, . . . , l, in the case of a time-harmonic scattering from a perfectly conducting sphere of radius
R with ω = 1, γ = (0, 0, 1)T , P = (1, 0, 0)T and Lmax = 16. In Table 2 we show the behavior
of the following quantity:

eS
Lmax,R

= (66)
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

∑1
σ=0

∑Lmax
l=1

∑l
m=σ | z∗

ω,γ ,Cσ,l,m
−∑S

s=0 zω,γ ,s,Cσ,l,m
|2 +| z∗

ω,γ ,Bσ,l,m
−∑S

s=0 zω,γ ,s,Bσ,l,m
|2∑1

σ=0

∑Lmax
l=σ

∑l
m=σ | z∗

ω,γ ,Cσ,l,m
|2 +| z∗

ω,γ ,Bσ,l,m
|2




1/2

,

for several values of the radius R and of the parameter S. Table 2 shows that the convergence
properties of the series when the distance between the obstacle � = BR and the base point of
the expansion �r = B1 increases.

Moreover, let

eS
Lmax

=
[ ∑1

σ=0

∑Lmax
l=1

∑l
m=σ | zω,γ ,S,Cσ,l,m

|2 + | zω,γ ,S,Bσ,l,m
|2∑1

σ=0

∑Lmax
l=σ

∑l
m=σ | ∑S

s=0 zω,γ ,s,Cσ,l,m
|2 + | ∑S

s=0 zω,γ ,s,Bσ,l,m
|2

]1/2

, (67)

in Tables 3–5 we show the behavior of eS
Lmax

with S = 1, 2, . . . , 9 and Lmax = 16 for several
test cases where the incident electromagnetic field (34), (35) is the field associated to a time-
harmonic linearly polarized incoming plane wave with polarization vector P = (1, 0, 0)T ,
and propagation direction γ = (0, 0, 1)T . In particular, in Table 3 and Table 4 we give eS

Lmax

for several values of the wave number ω/c, that is, ω/c = 0·5, 1, 2, 4, 8, when the obstacle
is a perfectly insulating (i.e., χ = ∞) cut octahedron (Table 3) or a perfectly conducting
(i.e., χ = 0) corrugated surface (Table 4). In Table 5 we consider a corrugated sphere with
electromagnetic boundary impedance χ = 2 and we show eS

Lmax
at a fixed value of the wave

number ω/c = 10 for different values of the height h of the corrugation. Tables 2–5 show that
the convergence of the series in powers of (ξ −1), that is, the convergence of

∑+∞
s=0 zω,γ ,s,Cσ,l,m

,∑+∞
s=0 zω,γ ,s,Bσ,l,m

, σ = 0, 1, l = 1, 2, . . . , Lmax, m = σ, σ + 1, . . . , l, depends on the mag-
nitude of (ω/c) maxx̂∈∂B |ξ(x̂) − 1|, and that, when this quantity is small enough, that is, for
example in the first three rows of Table 5, the series expansion considered gives very accurate
results.

We do not discuss the convergence properties of the ‘Fourier integrals’ (12), (13) that give
E s , Bs or the validity of the Gauss-Hermite quadrature rule used to approximate them in our
test cases, since these are standard topics in mathematical analysis.

The computational cost in terms of the number of double integrals that must be computed in
order to evaluate VS,N1,1,1

Lmax
(see (58)), that is, the approximate series expansion of the scattered

electric field E s up to order S, is given by:

Number of Integrals = 3N1 S(S + 3)(Lmax + 1)2 . (68)

We can see that the computational cost in (68) consists of a polynomial in N1 times a polyno-
mial in S times a polynomial in Lmax. We can use relatively large values of N1, S and Lmax,
since we make the computation of the approximations up to order S of the series in powers
of (ξ − 1) of the terms Es

ω,α , ω = ωi , i = 1, 2, . . . , N1, α = γ , in parallel. Moreover,
choosing α = γ for ω = ωi , i = 1, 2, . . . , N1, we compute for s1 = 0, 1, . . . , S the s1-
th order term of the expansion of Es

ωi,γ
and the computation of the s1-th order term of the

expansion (56) is fully parallelizable with respect to the vector spherical harmonics involved,
which means that is it is fully parallelizable with respect to σ = 0, 1, l = 1, 2, . . . , Lmax. We
note that for s1 = 0, 1, . . . , S the computation of the (s1 +1)-th-order term in the perturbation
series involves the knowledge of the s1-th-order term. Finally, the summation that defines
the quadrature rule can be computed in parallel. Thus, several different parallel architectures
can be used profitably to reduce the time needed to compute the approximations VS,N1,1,1

Lmax
and
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Table 6. Time versus number of pro-
cessors

processors seconds

3 858·73

6 429·59

12 215·04

24 107·80

30 86·38

60 43·30

120 21·51

US,N1,1,1
Lmax

in (58) and (59) of the solution E s , Bs of problem (1–5), (7), (8). Formulae similar to
(68) can be derived to express the computational cost of the method described in Sections 3–5
in the general case when N2 	= 1, N3 	= 1.

The algorithm previously described has been coded in Fortran 90 language and tested on a
cluster of four Alpha Digital workstations each one having four processors and on a Cray T3E
machine with 256 processors in ‘Multiple Instructions Multiple Data’ programming mode
using MPI as ‘message passing’ library.

Table 6 shows the execution time required versus the number of processors used by the
algorithm on the Cray T3E machine to compute

∑4
s=0 zωi,γ ,s,Cσ,l,m

, and
∑4

s=0 zωi ,γ ,s,Bσ,l,m
,

i = 1, 2, . . . , N1, σ = 0, 1, l = 1, 2, . . . , Lmax, m = σ, . . . , l, N1 = 400, Lmax = 16, relative
to a perfectly conducting holed sphere, that is χ = 0, and an incident electromagnetic field
given by (34), (35) with γ = (0, 0, 1)T , P = (1, 0, 0)T , ζ = 1 (see Figure 3). The time is
measured using the (Fortran) routine rtc() of the Cray T3E machine that gives the real-time
clock in clicks where a click corresponds to 3·333e-09 seconds. Table 6 shows that the parallel
performance of our algorithm on a parallel computer is really excellent in fact when passing
from 3 to 120 processors, that is, by multiplying the number of processors by 40, we divide
the corresponding execution time by 858·73/21·51≈39·92 so that we have a speed-up factor
of approximately 39·92/40=0·998.

We comment on some numerical results that are interesting from a physical point of view
obtained in one of the experiments described above.

Let

Z20 ={ (x, y, z)T ∈ R3, x=−2+ 4

20
i, y=−2+ 4

20
j, z=−2+ 4

20
k, i, j, k = 0, 1, . . . , 20}.

(69)

In Figure 3 (a) we show the incident magnetic-induction vector B i(x, t) for five values of
the time variable t , t = −1·5, −0·3, 0·3, 0·6, 1·8, when x belongs to a plane parallel to the
plane containing the origin and whose normal direction is given by [γ , P ] = (0, 1, 0)T and
located on top of the hole. In Figures 3 (b), (c), (d) we show a color map of the first component
of Bs (column (b)), of the second component of Bs (column (c)) and of the third component
of Bs (column (d)), respectively, when x ∈ Z20 and t = −1·5, −0·3, 0·3, 0·6, 1·8. We choose
the time variable t such that the maximum norm of the incident magnetic-induction vector
field is located, first at the bottom of the obstacle, then in the middle of the obstacle and
finally at the top of Obstacle 4, the holed sphere.
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Note that the point of view of Figure 3 (a) is different from the point of view of Figures 3
(b), (c), (d) (see the frames of reference shown on the top column (a) and (b) of Figure 3). In
fact, in Figure 3 (a) we look on the side of the hole and in Figures 3 (b), (c), (d) we look in
front of the hole.

We can see that the energy is trapped (the first and the second rows of Figures 3 (b), (c),
(d)), then irradiated (the third and the fourth rows of Figures 3 (b), (c), (d)), then trapped
(the last row of Figures 3 (b), (c), (d)) by the hole when the incident field goes through the
obstacle. This means that some kind of ‘resonance’ phenomenon takes place. This ‘resonance’
phenomenon is similar that observed in [19, Figures 6, 7] and in acoustics in [21, Figure 5].

Some animations relative to the experiments discussed previously can be found on the
website: http://www.econ.unian.it/recchioni/w4/ .

7. Conclusions

In this paper a method to solve time-dependent Maxwell equations in an isotropic homo-
geneous medium has been introduced. This method fulfills conditions (r1)–(r4) of the In-
troduction. In fact, the approximations of the electric and magnetic fields considered are
divergence-free by construction. Moreover, the computation of these approximations in the
particular implementation of the method presented in this paper involves only the solution
of ‘diagonal’ linear systems of equations. Finally, the method is highly parallelizable (see
Table 6), since we can compute simultaneously the time-harmonic fields appearing in formu-
las (26), (27) and the computation of each time-harmonic field with the operator-expansion
method is highly parallelizable. The limit of the implementation proposed here is that it does
not fulfill completely condition (r5). In fact, it is efficient and accurate when obstacles whose
shape is ‘near’ to the shape of a sphere are considered. However, as noted previously non-
trivial obstacles are ‘near’ the sphere in this context; see for example the cut octahedron (see
Table 3) and the corrugated surface (see Table 4). Finally, we note that the computational cost
of the proposed method is limited. In fact, it is linear in the number N1 of the time frequencies
involved, it is quadratic in the parameter S related to the expansion and in the number of
coefficients 2(Lmax + 2)Lmax of the vector spherical harmonics involved. Moreover, since the
computation of the N1 time-harmonic scattered fields can be carried out in parallel and also
the 2(Lmax + 2)Lmax coefficients of the expansion in vector spherical harmonics at each order
in the operator expansion can be computed in parallel, the method can be considered an effi-
cient tool to solve time-dependent Maxwell equations when parallel computing is available.
The version of the operator expansion method presented in this paper is limited to obstacles
‘near’ the sphere and is very powerful (i.e., satisfies (r1)–(r4), is highly parallelizable, its
computational complexity is competitive with the complexity of other existing methods).
At the price of reducing the performance obtained, the operator-expansion method can be
adapted for arbitrary obstacles. Further investigation will needed to study implementations of
the method capable to solve transmission and scattering problems in the presence of dispersive
materials. Note that the method presented here can be used with slight modifications to solve
transmission problems when the electric permittivity ε and the magnetic permeability µ are
piecewise constant functions of the spatial variables. Finally, we plan to develop a new version
of the operator-expansion method that removes the assumption of the existence of a coordinate
system (η1, η2, η3) such that the boundary of the obstacle ∂� admits a global representation
in this coordinate system, i.e., it can be represented as a function of one coordinate variable
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in terms of the other two coordinate variables. It is easy to see that it is possible to weaken
this hypothesis, assuming only the existence of a local representation of ∂�. Thus, ∂� can
be obtained by matching local representations with respect to several different coordinate
systems. This new version of the method could solve efficiently scattering problems from
obstacles whose shapes can be considered arbitrary for all practical purposes.
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